Heat flow from high temperature to low temperature to reduce the thermal imbalance and to bring the system closer to thermal equilibrium, which is a phenomenon in nature as well as in our daily life. In this talk I report a counter example: heat does not flow from high to low temperature; Instead, heat energies at both high and low temperatures were held “localized”, halting the equilibration process in the system by a Novel concept--differential magneto-thermal force. Using two different configurations of temperature and magnetic field gradients, we observed magnetic field-induced flow that either enhances the gravito-thermal convection when the gradients of temperature and field are parallel to each other, or suppress it when the two gradients are antiparallel to each other, where the convection roll in zero field was replaced by two localized flows at the two ends of the sample cell. This flow structure stops the heat flow in the system, causing the temperature difference across the sample to increase with applied fields. The drastically different effects of the field on the equilibration processes resulted from two totally different topological flow-structures for the two experimental configurations imply a profound bifurcation of the solutions for the underlying physics. These observations qualitatively confirmed the prediction that the differential magneto-thermal force designed for this experiment can drive a new type of apparatus to transfer heat energy with higher efficiency than the convention ones in textbooks, such as Carnot heat engines.

Collaborators: J. Huang, D. Smalley, and Tianshu Liu

Monday, 3:00-4:00pm, April 15, 2019. SERC, Room 116