Physics 1061: Elementary Classical Physics I

Sections 1, 2, 4 and 7

Course Description
Topics include vector algebra, motion in one-, two-, and tree dimensions, energy and work, conservation of energy, conservation of linear momentum, collisions, rotational kinematics and dynamics, conservation of angular momentum, equilibrium and elasticity, gravitation, fluids, oscillations and waves. The course is designed primarily for physics, chemistry, engineering, geology and mathematics majors, but open to others.

Instructors

Lecture: Alexander Gray, Ph.D., Assistant Professor, Department of Physics (SERC 442)
Office Hours: Tuesday and Thursday, 4:00 pm – 5:00 pm

Recitation Instructor: Xuan Li, Ph.D., Research Assistant Professor, Department of Physics (SERC 451)
Office Hours: Friday, 10:00 am - noon

Lab Coordinator: John Noel, Ph.D., Research Assistant Professor, Department of Physics (SERC 235A)
Office Hours: Tuesday, 9:00 am – 10:00 am, and Wednesday, 3:00 pm – 4:00 pm

Course Coordinator: Michael Paolone, Ph.D., Assistant Professor, Department of Physics (SERC 445)
Office Hours: Every work day, 10:00 am – 12:00 pm and then 1:00 pm – 4:00 pm

For all questions, send your emails to the Course Coordinator (Michael Paolone) at 1061sp15ag@temple.edu

Schedules

Lectures: Tuesday and Thursday, 2:00 pm – 3:20 pm, SERC 110B

Recitations:
- **Section 1:** Wednesday, 9:00 am – 9:50 am, Barton Hall B400
- **Section 2:** Wednesday, 10:00 am – 10:50 am, Barton Hall B400
- **Section 4:** Wednesday, 11:00 am – 11:50 am, Barton Hall B400
- **Section 7:** Wednesday, 12:00 pm – 12:50 pm, Barton Hall B400

Required Materials

- **Textbook**
 Fundamentals of Physics, 10th edition (text is required for every student)
 Authors: David Holliday, Robert Resnick, & Jearl Walker
 Publisher: John Wiley & Sons, Inc. ISBN: 978-1-118-23376-4 (Volume 1)

- **WebAssign**
 You must purchase WebAssign access from www.webassign.net in order to complete your homework. See instructions on Page 3 of the syllabus.

- **Clicker**
 In addition to the campus bookstore, students can purchase *Turning Technologies* response cards (RF clickers) at a discount directly from the *Turning Technologies online store* (online price: $32 plus shipping). Note: When accessing the *Turning Technologies online store*, you will be prompted for a school code. The code for Temple University is **6mS4**. Once you get your response pad, you must register the Response Pad before you can use it in class.
• **Miscellaneous**
 Students should prepare notebooks, pencils, and rulers for taking notes, drawing diagrams, and working on problem solving exercises. Occasionally, calculators will be needed. Simple scientific calculator with trigonometric functions, inverse trigonometric functions and logarithmic functions should suffice for this course.

Grading

- Midterm 1: 15%
- Midterm 2: 15%
- Comprehensive Final Exam: 20%
- Pop-Up Lecture Quizzes: 10%
- Homework: 20%
- Lab Reports: 20%

Attendance

Attendance in lectures, recitations and labs is required and will be taken. All absences must be documented (*e.g.* doctor’s note), and the instructor / course coordinator has to be informed of the absence in advance.

- **Lecture attendance** will be recorded during random times using your Clicker devices. You are allowed one undocumented absence from the lecture (use it wisely). There will be no make-up lecture quizzes, so in case of any kind of absence your quiz grade will be zero.
- **Recitation attendance** will be recorded by the recitation instructor. You are allowed one undocumented absence from the recitation. Each additional undocumented absence from the recitation will result in your final class grade lowered by one-half letter grade (*e.g.* A to A-, A- to B+, B+ to B, etc.)
- **Lab attendance** will be recorded by the lab instructor. Please show up on time, you will get started working on the lab right away after the quiz and a brief introduction from the instructor. Students who arrive late and miss the instructions and safety precautions for the day’s experiment will not be allowed into the lab. No lab report may be turned in if you did not attend the lab session.

Homework (20% of the total grade)

Weekly problem sets will be assigned. Homework will be due every Tuesday by 2:00 pm (before the start of the Tuesday lecture). Late homework will not be accepted. Next week’s homework assignments will be posted on Tuesdays, so that you will have one week to complete the homework problem set.

Midterms (15% of the total grade each)

Midterm exams are scheduled tentatively for February 19 and April 2, during regular lecture time. All exams will be “closed-book”. Each exam will consist of several questions and problems with multiple-choice answers. Scratch paper will be provided, and will have to be turned-in stapled to the exam.

Final Exam (20% of the total grade)

Comprehensive Final Exam is tentatively scheduled for Thursday, April 30, 1:00 pm – 3:00 pm. The exam will consist of several questions and problems with multiple-choice answers. The exam will be “closed-book”. Scratch paper will be provided, and will have to be turned-in stapled to the exam.

Tutoring

Physics Department Tutoring Service will be provided on weekdays from 8:00 am to 4:00 pm, in the breakout area outside of room 484 in SERC. Temple’s Math and Science Resources Center also provides tutoring with convenient schedule.

Disability Statement

Any student who has a need of an accommodation based on the impact of a disability should contact me privately to discuss the specific situation as soon as possible. Also contact Disability Resources and Services at 215-204-1280, 100 Ritter Annex.
WebAssign Homework

Many of you will be familiar with Enhanced WebAssign by now. If you are not, WebAssign is an online homework tool you will need to purchase access to complete all assignments for this course.

Purchasing WebAssign

You must purchase WebAssign access from www.webassign.net in order to complete your homework. This must be completed online using a credit-card or PayPal account. The total cost is $44.95 for the homework alone, or $89.70 for a combination homework AND eBook. Purchasing the online homework is necessary. You may also purchase the eBook for convenience, but you will only have access for the duration of the semester.

Instructions for purchasing the WebAssign Homework can be found online here:

www.webassign.net/manual/student_guide/t_s_purchasing_access_ebooks_online.htm

Enrolling in WebAssign for Physics 1061

Your course information is here:

Course Name: Phys1061

Start Date: 1/12/2015

Instructor Name: Michael Paolone

Class Key Code: temple 8451 8112

Go to: www.webassign.net and click on “I have a Class Key”, then enter the class key code listed above. If you have never used WebAssign before, you will also need to create a username and password. When you enter your first and last names into the student information box, MAKE SURE TO DOUBLE CHECK THAT YOU SPELLED YOUR NAME CORRECTLY. I know it sounds unlikely that you would misspell your own name, but typos happen. If I can not identify which account belongs to you, you will likely receive a zero for a homework grade.

Issues / Problems with WebAssign

If you are having problems or issues using WebAssign, please contact the WebAssign customer support. They are very good about getting back to you quickly to help solve your problems. See:

https://webassign.com/support/student-support/

Homework Extensions

Only the most serious of circumstances will be considered for homework extensions. Any medical excuse must be accompanied by an official doctor's note or its equivalent.
<table>
<thead>
<tr>
<th>WEEK</th>
<th>DATE</th>
<th>DAY</th>
<th>LECTURE</th>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>HOMEWORKS</th>
<th>LABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Jan. 13</td>
<td>Tuesday</td>
<td>Lecture 1</td>
<td>Chapter 1</td>
<td>Measurement</td>
<td>Homework 1 Due (Ch. 1-2)</td>
<td>No Labs</td>
</tr>
<tr>
<td>Week 2</td>
<td>Jan. 15</td>
<td>Thursday</td>
<td>Lecture 2</td>
<td>Chapter 2</td>
<td>Motion Along a Straight Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td>Jan. 20</td>
<td>Tuesday</td>
<td>Lecture 3</td>
<td>Chapter 3</td>
<td>Vectors</td>
<td>Homework 2 Due (Ch. 3)</td>
<td>No Labs</td>
</tr>
<tr>
<td>Week 4</td>
<td>Jan. 22</td>
<td>Thursday</td>
<td>Lecture 4</td>
<td>Chapter 4</td>
<td>Motion in Two and Three Dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>Jan. 27</td>
<td>Tuesday</td>
<td>Lecture 5</td>
<td>Chapter 5</td>
<td>Force and Motion I</td>
<td>Homework 3 Due (Ch. 5)</td>
<td>No Labs</td>
</tr>
<tr>
<td>Week 6</td>
<td>Jan. 29</td>
<td>Thursday</td>
<td>Lecture 6</td>
<td>Chapter 6</td>
<td>Center of Mass and Linear Momentum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Feb. 3</td>
<td>Tuesday</td>
<td>Lecture 7</td>
<td>Chapter 7</td>
<td>Kinetic Energy and Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 8</td>
<td>Feb. 5</td>
<td>Thursday</td>
<td>Lecture 8</td>
<td>Chapter 8</td>
<td>Potential Energy and Conservation of Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 9</td>
<td>Feb. 10</td>
<td>Tuesday</td>
<td>Lecture 9</td>
<td>Chapter 9</td>
<td>Force and Motion II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 10</td>
<td>Feb. 12</td>
<td>Thursday</td>
<td>Lecture 10</td>
<td>Chapter 10</td>
<td>Force and Motion III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 11</td>
<td>Feb. 17</td>
<td>Tuesday</td>
<td>Lecture 11</td>
<td>Chapter 11</td>
<td>Oscillations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>Feb. 19</td>
<td>Thursday</td>
<td>Lecture 12</td>
<td>Chapter 12</td>
<td>Waves I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 13</td>
<td>Feb. 24</td>
<td>Tuesday</td>
<td>Lecture 13</td>
<td>Chapter 13</td>
<td>Waves II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 14</td>
<td>Feb. 26</td>
<td>Thursday</td>
<td>Lecture 14</td>
<td>Chapter 14</td>
<td>Oscillations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 15</td>
<td>Mar. 10</td>
<td>Tuesday</td>
<td>Lecture 15</td>
<td>Chapter 15</td>
<td>Waves III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 16</td>
<td>Mar. 12</td>
<td>Thursday</td>
<td>Lecture 16</td>
<td>Chapter 16</td>
<td>Waves IV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LABS

- Lab 1: "Simple Harmonic Motion" (Ch. 1-2)
- Lab 2: "Linear Momentum" (Ch. 3)
- Lab 3: "Motion in One Dimension" (Ch. 4)
- Lab 4: "Motion in Two and Three Dimensions" (Ch. 5)
- Lab 5: "Center of Mass and Linear Momentum" (Ch. 6)
- Lab 6: "Kinetic Energy and Work" (Ch. 7)
- Lab 7: "Potential Energy and Conservation of Energy" (Ch. 8)
- Lab 8: "Force and Motion II" (Ch. 9)
- Lab 9: "Force and Motion III" (Ch. 10)
- Lab 10: "Oscillations" (Ch. 11)
- Lab 11: "Waves I" (Ch. 12)
- Lab 12: "Waves II" (Ch. 13)
- Lab 13: "Equilibrium of a Rigid Body" (Ch. 14-15)
- Lab 14: "Simple Harmonic Motion and Conservation of Energy" (Ch. 16)
- Lab 15: "Motion Along a Straight Line" (Ch. 17)
- Lab 16: "Motion in Two and Three Dimensions" (Ch. 18)
- Lab 17: "Archimedes' Principle" (Ch. 19)
- Lab 18: "Circular Motion" (Ch. 20)
- Lab 19: "Rolling Torque and Angular Momentum" (Ch. 21)
- Lab 20: "Rolling Torque and Angular Momentum" (Ch. 22)
- Lab 21: "Motion in Two and Three Dimensions" (Ch. 23)
- Lab 22: "Center of Mass and Linear Momentum" (Ch. 24)
- Lab 23: "Kinetic Energy and Work" (Ch. 25)
- Lab 24: "Potential Energy and Conservation of Energy" (Ch. 26)
- Lab 25: "Wave Phenomena" (Ch. 27)
- Lab 26: "Wave Phenomena" (Ch. 28)

HOMEWORKS

- Homework 1 Due (Ch. 1-2)
- Homework 2 Due (Ch. 3)
- Homework 3 Due (Ch. 5)
- Homework 4 Due (Ch. 7-8)
- Homework 5 Due (Ch. 9)
- Homework 6 Due (Ch. 10-11)
- Homework 7 Due (Ch. 12)
- Homework 8 Due (Ch. 13-14)
- Homework 9 Due (Ch. 15-16)
- Homework 10 Due (Ch. 17-18)

LABS

- Lab 1: "Simple Harmonic Motion" (Ch. 1-2)
- Lab 2: "Linear Momentum" (Ch. 3)
- Lab 3: "Motion in One Dimension" (Ch. 4)
- Lab 4: "Motion in Two and Three Dimensions" (Ch. 5)
- Lab 5: "Center of Mass and Linear Momentum" (Ch. 6)
- Lab 6: "Kinetic Energy and Work" (Ch. 7)
- Lab 7: "Potential Energy and Conservation of Energy" (Ch. 8)
- Lab 8: "Force and Motion II" (Ch. 9)
- Lab 9: "Force and Motion III" (Ch. 10)
- Lab 10: "Oscillations" (Ch. 11)
- Lab 11: "Waves I" (Ch. 12)
- Lab 12: "Waves II" (Ch. 13)
- Lab 13: "Equilibrium of a Rigid Body" (Ch. 14-15)
- Lab 14: "Simple Harmonic Motion and Conservation of Energy" (Ch. 16)
- Lab 15: "Motion Along a Straight Line" (Ch. 17)
- Lab 16: "Motion in Two and Three Dimensions" (Ch. 18)
- Lab 17: "Archimedes' Principle" (Ch. 19)
- Lab 18: "Circular Motion" (Ch. 20)
- Lab 19: "Rolling Torque and Angular Momentum" (Ch. 21)
- Lab 20: "Rolling Torque and Angular Momentum" (Ch. 22)
- Lab 21: "Motion in Two and Three Dimensions" (Ch. 23)
- Lab 22: "Center of Mass and Linear Momentum" (Ch. 24)
- Lab 23: "Kinetic Energy and Work" (Ch. 25)
- Lab 24: "Potential Energy and Conservation of Energy" (Ch. 26)
- Lab 25: "Wave Phenomena" (Ch. 27)
- Lab 26: "Wave Phenomena" (Ch. 28)